

Oil Country Fittings Casing Couplings

API Casing Couplings Short Thread	Casing O.D.		Weight/100		Length of Round Thread Coupling	
	NPS	DN	lbs	kg	in	mm
	4 ¹ / ₂	114	805	365	61/4	159
	5	125	1018	462	61/2	165
	51/2	140	1144	519	63/4	171
	65/8	168	1997	906	71/4	184
	7	175	1834	832	71/4	184
	75/8	194	2693	1222	71/2	191
	85/8	219	3558	1614	73/4	197
	95/8	144	3951	1792	73/4	197
	103/4	273	4553	2065	8	203
	113/4	298	-	-	8	203
	133/8	340	5623	2551	8	203
	16	400	7898	3582	9	229
	20	500	9500	4309	9	229

API Casing Couplings Long Thread	Casin	g O.D.	Weigt	nt/100	Length of	Coupling
	NPS	DN	lbs	kg	in	mm
	41/2	114	907	411	7	178
	5	125	1256	570	7 ³ / ₄	197
	5½	140	1403	636	8	203
	65/8	168	1829	830	8 ³ / ₄	222
	7	175	2367	1074	9	229
	7 ⁵/8	194	3423	1553	91/4	235
	85/8	219	4748	2154	10	254
	9 ⁵ /8	244	5577	2530	101/2	267
	103⁄4	273	6202	2813	101/2	267
	133/8	340	7663	3476	101/2	267

Combination Couplings J-55	Size	0.D
	in	in
	2	23/8
	21/2	27/8
Construction of the second sec	3	3
	4	4

PROJECT INFORMATION	APPROVAL STAMP
Project:	Approved
Address:	Approved as noted
Contractor:	Not approved
Engineer:	Remarks:
Submittal Date:	
Notes 1:	
Notes 2:	

Casing Couplings

J.B. Smith oil country tubular fittings, swages and bull plugs add an important dimension to the industry's leading line of flow control products offered by Anvil. J.B. Smith is a respected name and its products are well known for high quality and consistency.

Full Traceability

All J.B. Smith swages, bull plugs, tubing and casing nipples, and chambers are traceable to the original mill test report. To ensure traceability, all fittings are steel stamped as follows:

Material Specification

- Material Grade WPB (ASTM A234 Line Pipe)
- Material Grade J–55, K–55, L–80, N–80 (API 5CT – Oil Country Sizes)

Raw Material Code

Each is stamped with unique JBS material code for traceability to material type, details of purchase and mill test report.

Heat Treatment

Items made to specification grades requiring final heat treatment bear an additional two letter code for heat treatment traceability. All J.B. Smith products conform to the following applicable specifications:

- API 5B Threading Oil Country size
- API 5CT Raw material, Process, End Finish (Oil Country Sizes)
- ASME B1.20.1 Threading Line Pipe
- ASME B16.9 Weld Bevels
- MSS SP-95 Swage and Bull Plug
- ASTM A234 WPB Raw material, Process, End Finish (Line Pipe High Temp)
- ASTM A420 WPL6 Raw material, Process, End Finish (Line Pipe Low Temp)
- ASTM B633 Type III Class III Zinc Electroplate
- NACE MR-01-75 As Applicable

asc-es.com

Building connections that last*

Swage Nipples, Bull Plugs, Oil Country Fittings, Couplings, Stainless Swages

Manufacturing Specification

J.B. Smith manufactures swage nipples and bull plugs in accordance to the applicable specification, API 5CT, ASTM A234, MSS SP-95. Materials include ASTM A106, GR B seamless pipe, A-1000 low to medium carbon, fine grain bar stock, API grades J-55 through N-80 tubing and casing, processed and heat treated to applicable specification requirements. Fitting chemical and physical properties fall within the ranges listed below.

All fittings are manufactured in the U.S.A.

Traceability

All material purchased by J.B. Smith is fully traceable to the mill source. A unique JBS material code appears on all products made since the institution of this program. As a result, mill test reports are now available at any time on products so coded (See EXTRAS for MTR charges.)

Pressure Ratings

Due to the wide variation in service conditions, temperature, vibrations, etc., J.B. Smith Mfg. can make no recommendations as to allowable working pressure of swage nipples and bull plugs. There are a number of working pressure formulas from which the end user may choose to determine the required wall thickness of the piping system. It is our responsibility only to furnish a fitting with end dimensions equal to those of the pipe size and schedule ordered.

Material Certification – Carbon Steel

J.B Smith certifies that the material used to manufacture line pipe sizes of swage nipples and bull plugs has be processed to comply with the requirements of ASTM A234 grade WPB and the chemical and physical properties of the fittings fall within the ranges listed below.

Marking

All J.B. Smith fittings are permanently marked as follows:

- Manufacturer's symbol -
- **Material Specification or Grade** WBP (Line Pipe Sizes)

I-55, K-55, L-80, N-80 (Oil Country Sizes)

- Raw Material Code Each part is die stamped with unique JBS material code for traceability to material type, details of purchase and mill test report.
- Heat Treatment Heat treatments are performed to ASTM A234 WPB or API 5CT specification grade requirement as applicable. Fittings bear a two letter code provide traceability to final heat treatment.

Threading

Line Pipe, Tubing and Casing threads conform to ASME B1.20.1 B or API 5B as applicable.

Oil Country Industry Thread Color Code

Industry Color Codes as follows:

8R - Red 10R - Yellow 10V - Blue 111/2V - Green LP - Silver

Coatings

- Zinc Electroplate ASTM B633 Type III Class III
- Paint (Weld Bevel Ends)

Weld Bevels

Weld bevels are machined per ASME B16.9 specifications.

Chemical and Physical Requirements

			Material	API 5CT					
			equirements	Chemical R					
S Si	S	Cu P	Ni	Cr	Мо	Mn	С	Gr	Grp
.030 Max —	0.030 Max	– 0.030 Max	_	_	-	_	_	J55	1
.030 Max —	0.030 Max	– 0.030 Max	_	_	_	_	_	K55	1
.030 Max —	0.030 Max	– 0.030 Max	_	_	_	_	_	N80 Type1	1
0.030 Max 0.45 M	0.030 Max).35 Max 0.030 Max	0.25 Max	_	_	1.90 Max	0.43 Max	L80 Type1	2
			quirements	Physical Re					
lardness	Hardness	gth ksi	Tensile Str	rength ksi	Yield St	ongation load %	Total Elo under	Gr	Grp
).	0.	0.35 Max 0.030 Max	quirements	– Physical Re	_ _ Yield St	ongation	0.43 Max Total Eld	L80 Type1	

			-	-		
1	J55	0.5	55-80	75	_	_
1	K55	0.5	55-80	95	_	_
1	N80 Type1	0.5	80-110	100	_	_
2	L80 Type1	0.5	80-110	95	23	241

Notes:

Fittings made from bar or plate may have 0.35 Max Carbon.
Fittings made from forgings may have a 0.35 Max Carbon and 0.35 Max Silicon.
For each reduction of 0.01% below the specified carbon maximum, an increase of 0.06% manganese above the specified maximum will be permitted, up to a maximum of 1.35%.
The sum of Copper, Nickel Chromium and Molybdenum shall not exceed 1.00%.
The sum of Chromium and Molybdenum shall not exceed 0.32%.

Casing Couplings

Oil Country Fittings

Current API Thread Standards

Current API Thread Standards							
Siz		0.		Pipe	Tubing & Casing		
NPS	DN	in	mm				
3⁄4	20	1.050	27	14			
³ ⁄ ₄ EUE	20	1.050	27	_	10 Rd.		
1	25	1.315	33	111/2	10 Rd.		
1 EUE	25	1.315	33	_	10 Rd.		
11⁄4	32	1.660	42	111/2	10 Rd.		
1¼ EUE	32	1.660	42	-	10 Rd.		
11/2	40	1.900	48	1111/2	10 Rd.		
11/2 EUE	40	1.900	48	-	10 Rd.		
2	50	23/8	60	111/2	10 Rd.		
2 EUE	50	23/8	60	-	8 Rd.		
21⁄2	65	27/8	73	8V	10 Rd.		
2½EUE	65	27/8	73	-	8 Rd.		
3	80	31/2	89	8V	10 Rd.		
3 EUE	80	31⁄2	89	_	8 Rd.		
31⁄2	90	4	102	8V	8 Rd.		
31/2 EUE	90	4	102	8V	8 Rd.		
4	100	41⁄2	114	8V	8 Rd.		
4 EUE	100	41⁄2	114	_	8 Rd.		
_	_	5	127	_	8 Rd.		
_	_	5½	140	_	8 Rd.		
5	125	5%16	141	8V	-		
_		6	152		8 Rd.		
6	150	651/8	168	8V	8 Rd.		
		7	178		8 Rd.		
_		75/8	194		8 Rd.		
8	200	85/8	219	8V	8 Rd.		
-		95/8	244		8 Rd.		
10	250	1034	273	8V	8 Rd.		
-		113/4	298	_	8 Rd.		
12	300	123⁄4	324	8V	0 KU. 		
-		1274	340				
		13-78			8 RU		
-	_		356	8V			
-	_	16	406	8V	8 Rd.		
_		18	457	8V			
-	-	20	508	8V	8 Rd.		

